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A b s t r a c t  

Irreducible hyperk~ihler manifolds of dimension greater than four admitting a cohomogeneity- 
one action of a compact simple Lie group are classified via coadjoint orbits. It is shown that the 
only complete example is the Calabi metric on T*CP(n). 
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1. I n t r o d u c t i o n  

The intractability of the Einstein equations has led mathematicians interested in Einstein 

metrics to impose simplifying assumptions. One such assumption is that of  homogeneity, 

when the Einstein condition may be expressed purely algebraically. Another natural re- 

striction is to consider metrics of  cohomogeneity one, that is, where the generic orbit of  

the isometry group has real codimension one. For cohomogeneity-one metrics the Einstein 

condition becomes a system of non-linear ordinary differential equations. Although con- 
siderable progress has been made [5,13], a classification of  complete cohomogeneity-one 
Einstein metrics still seems far off. 

In this paper we shall prove a classification theorem for cohomogeneity-one metrics which 
satisfy the stronger condition of  being hyperki ihler .  This condition means that the metric is 

simultaneously KS.hler with respect to three complex structures satisfying the quaternionic 
multiplication relations. Hyperk~ihler manifolds have dimension 4n, their holonomy lies 
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in Sp(n) and they are Ricci-flat. The last property implies that homogeneous hyperkahler 

metrics are flat, so in some sense the cohomogeneity one examples should be the simplest 
non-trivial hyperkahler metrics. 

We shall prove the following theorem. 

Theorem 1.1. Let M be an irreducible hyperkiihler manifold of dimension greater than 

four, of cohomogeneity one with respect to a compact simple Lie group G. Then M is an 

open subset of 

(i) the cotangent bundle of complex projective space with the Calabi metric [10], or 

(ii) the space Lt(N) of Swann [18] (with its standard metric), where N is a compact Wolf 

space. 

If M is complete, then M is T* CP(n) with the Calabi metric. 

Remark  1.2. Our assumptions are chosen to force the group action to preserve each com- 
plex structure. This is because irreducibility implies that the space of parallel two-forms 
has real dimension precisely equal to three. Our assumptions on G and dim M mean that 
this space is acted on trivially by G. In other words, G fixes each complex structure. 

If M is four-dimensional and G is a compact simple group, then all the cohomogeneity- 
one hyperk~ihler metrics are known [4,3,14]. There are two families, both of cohomogeneity 
one with respect to SU(2). In one family the complex structures are all fixed by the action, 

while in the other, SU(2) acts on the space of parallel two-forms via the adjoint representa- 
tion, so acts transitively on the two-sphere of complex structures. The only complete example 
in the first family (except for Euclidean space) is the Eguchi-Hanson metric on T* .CP(1), 

which is included in the examples of Calabi. However the first family also includes a 
two-parameter set of incomplete examples, classified in [4], which are not restrictions of 
the Eguchi-Hanson metric. This contrasts with the situation in dimension greater than four 
described by our theorem. 

Remark  1.3. Our proof of Theorem 1.1 also goes through in the case when G is compact 

and semi-simple, provided one assumes that any 6u(2)-factor in the decomposition of ,q 
into simple algebras acts trivially on the complex structures. One may also apply the result 
to actions of general compact groups if one makes the above assumption not only for 
~n(2)-factors but also for Abelian factors, and if in addition one assumes the existence of 
a hyperkahler moment map. 

Remark 1.4. Bielawski [7] has informed us of an alternative proof under the additional 
assumption that the hyperkahler metrics are complete. 

2. Complex structures 

From now on we shall assume that M and G are as in the statement of Theorem 1.1. 
There will be an open dense set M in M consisting of the union of the principal orbits. 

These orbits arc copies of G / K  for some closed subgroup K of G, so our open set may 
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be identified topologically with I x G / K  for an open subinterval I of  the real line. Note 

that by the Cheeger-Gromoll theorem [ 11 ], if our metric is to be complete there must also 

be precisely one non-principal orbit G/H.  (If there were two non-principal orbits, then M 

would be compact so the Killing fields would be parallel and the isometry group could not 

be simple.) Since M is a manifold, H / K  is necessarily a sphere. 

Let J be a complex structure, and let Gc  denote the complexification of  G with respect 
A 

to J.  The space of  J-complexified Killing fields spans the tangent space at each point of  M, 

so we may equivariantly identify an open G-invariant neighbourhood of a principal orbit 

i n /~  with a G-invariant open set in some Go-homogeneous space Q. Moreover, as G acts 

J-holomorphically and preserves the complex-symplectic forms on M, we see that Q is 

homogeneous complex-symplectic with respect to Gc.  Since G is simple, the hyperk~ihler 

moment map for the G-action on M exists and hence the complex-symplectic moment map 

for the Gc-action on Q exists also. 
A theorem of Lichnerowicz [17] now tells us that Q is a cover of  a coadjoint orbit CO 

of Gc,  which because of  our hypotheses on M must be of cohomogeneity one with respect 

to G. We must now analyse when this situation can occur. 

Theorem 2.1. Let CO be a coadjoint orbit of Go, where G is a compact simple group. If  CO 
is of cohomogeneity one with respect to G, then it is either the nilpotent orbit LI ( N), where 

N is the Wolf space associated to G, or SL(n, C)/GL(n - 1, C). 

Proof. Let .qc be the Lie algebra of  Gc  and identify .qc with .q~ via the Killing form. Under 

this identification the coadjoint orbits correspond to the adjoint orbits. Let X be an element 

of  ,qc. The Jordan~2hevally decomposition (see [15]) allows us to write X = Xs + Xn in a 

unique way with Xs semi-simple, Xn nilpotent and [Xs, Xn] = 0. Uniqueness implies that 

stabGc X = stabGc Xs N stabGc Xn. 
Let us write cohom X for the cohomogeneity of the Gc-orbit  CO of X under the action 

of G. Then we claim 

cohom X >_ max{ cohom Xs, cohom Xn }. (2.1) 

To prove this, suppose tp : N1 --+ N2 is a smooth, equivariant surjection between two 

G-manifolds. For i = 1, 2, let Ui C Ni be the open dense set which is the union of 

principal orbits. Then ~0 - l  (/-/2) is open in Nj and G-invariant, so it is enough to consider 

~0 restricted to Vl :=  Ul fq ~o-l(U2). Let I/2 = ~0(Vl). Then Vi/G, i = 1, 2, are manifolds 
whose dimension is the cohomogeneity of  the G-action on Ni. But the map V1 / G -+ V2/G 
induced by ~0 is a smooth surjection, so it decreases dimension. Hence, we have codim NI > 

codim N2. Inequality (2.1) is now seen to hold by applying the above arguments to the 

equivariant surjections (9 --+ COs :=  Gc  • Xs and 69 --+ On :=  GC • Xn given by taking the 
semi-simple and nilpotent parts. 

Thus, by (2.1), to find the orbits of  cohomogeneity one, we first have to identify the 

nilpotent orbits On and semi-simple orbits C0s which have cohomogeneity at most one. 
If COn is a non-zero nilpotent orbit then it is non-compact and so cannot be homogeneous 

under the action of  G. In [18], it was shown that COn admits a G-invariant hyperk~hler 
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metric and an action of H* such that N = On/H* is a quaternionic K~ihler manifold and 

G acts isometrically on N. If On is of cohomogeneity one, then N is homogeneous and it 

follows from [ 1,2] that N is a compact symmetric quaternionic K'fihler manifold, i.e. a Wolf 

space [19], and that (..9 is the (unique) minimal nilpotent orbit in .qc. 

Now consider the semi-simple orbit Os. Choose a Cartan subalgebra b of .qe contain- 
ing Xs, let A be the set of  roots and let A + be the set of positive roots. Using the action of the 

Weyl group we may assume that Xs lies in the positive Weyl chamber. Write .qu for the root 

space associated to ~ and let a be the real structure such that .q = (,qc) ~ and ~r (.q~) = .q_~. 

Then 

stab q c Xs = [~ • t ~  .q,~, 

~(Xs)=0 

which is clearly ~r-invariant. Thus the real orbit through Xs has half the (real) dimension of 

the complex orbit. However, this is not a principal orbit for the action of  G on Os. 

The G-action is of  cohomogeneity one if and only if the action of  stab6 Xs on non- 

zero vectors at Xs normal to G • Xs in Os is also of  cohomogeneity one. The tangent 

space to Os at Xs is ad(Xs).qe. Let ~ be a simple root such that ot(Xs) is non-zero and 

let E,~ 6 .qa be the corresponding element of  the Cartan basis (or indeed any non-zero 

element in .q~). Then [Xs, E~] = ot(Xs)Ea, so E,~ lies in the tangent space to Os at Xs. 

Note that Xs is in the positive Weyl chamber, so ot(Xs) > 0. Furthermore, E,, is not 

tangent to the real orbit through Xs as it is not a linear combination of  elements of the form 

E,~ - E_,~. Write Y E O for the image of  this tangent vector under the exponential map. 

We have 

stab q c E a = { H E b : o t ( H ) = O } q ~  ~ g/~ (2.2) 

a+~¢za 

and the real part of  this is the stabiliser for the G-action. On the other hand 

codimo G - Y = dim G c  - dim stabGc Xs 

- dim G + dim(stabG Xs M stabG Ea) 

= dim G - dim stabG Xs - dim(stabq Xs O stab.q E,~), 

where O denotes the ortho-complement. Now 

dim G - dim staba Xs = 2#{/~ e A+:/~(Xs) -¢ 0 } 

and from (2.2) 

dim(stabq Xs O stab q E,~) 

= 1 + 2#{/3 E A+:/5(Xs) = 0, {or ::t:/3} (1 (A U {0}) ¢ ~/}. 

However,/3(Xs) = 0 implies ot +/~ ¢ 0, so either o~ +/~ ~ A+ or ot --/~ e A - .  But a - 15 is 
positive on Xs so cannot lie in A - .  The codimension of the G-orbit through Y is thus 
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c o d i m o G . Y - - l + 2 # { / 3 6  A + \{o t} : f l (Xs )  5 ~0}  

-2#{ /3  ~ A+:/3(Xs)  = 0, ot + ,8 ~ A + } 

- - ! + 2 # { f l 6  A +\{ot l : f l (Xs)¢:0l  
--2#{ y ~ A +" y(Xs)  = ot(Xs), y - ot E A + } 

= 1 + 2 # ] 3  6 A + \ {otl:/3(X.0 -¢ 0, 

(/3(xs) = o~(x~) 7 / 3  - c ~  ¢ A)} .  

Thus Os is of cohomogeneity one if and only if the latter set is empty, i.e.for any positive 
root fl ~ ot either/3(Xs) --  0 or/3(Xs) -- ot(Xs) and/3 - ot is a root. This implies that ot is 

the only simple root which is non-zero on Xs and ot occurs with multiplicity at most one in 

the expression of  any positive root as a sum of  simple roots. In particular, if there are short 

and long roots, then ot is long. Moreover, ot is an extreme root in the Dynkin diagram; since 

if or has two neighbours t~ t and o(:, then/3 = ot +o t t  + ot t: is a root with/3(Xs) = ot(X~), 

but fl - ~ = d:  + or" is not a root. 

We now consider the different simple Lie algebras in turn. 

G2, F4 and E8 are ruled out because every simple root has multiplicity strictly greater 

than one in the top root forms 2~E3,  23::~=42 and 2345642'3 respectively. 
1 

In Bn, Cn, Dn, E6 and E7, the top root forms are/3 = 12 • • • 2::~=2, 1::~=2 • • • 2, 12...2 , 
1 

2 and 2 respectively. These all contain a long extreme simple root ot of  multiplicity 12321 123432 '  

one, but in each case/~ - o~ is not a root. 

Thus we are left with type An, where there is only one extreme root ot -- 1 0 . . .  0, 

up to the action of  the Weyl group, and we have Xs = d i ag ( -nX,  2. . . . . .  ~.). This orbit 

is SL(n, C)/GL(n - 1, C), as required. 

Thus the only semi-simple orbit of cohomogeneity one occurs for type An. It is now easy to 

show that the combination of  this orbit with the minimal nilpotent orbit has cohomogeneity 

strictly greater than one and the proof is complete. [] 

R e m a r k  2.2. One may give a geometric argument for which semi-simple orbits are of  co- 

homogeneity one as follows. The orbit O~ may be written as G c / K c  for some closed 

subgroup K of  G. This quotient is G-equivariantly diffeomorphic to the tangent bun- 

dle T(G/K) .  If  69~ is of  cohomogeneity one, then G acts transitively on the unit sphere 

bundle of  T(G/K) .  This implies that G / K  is a two-point homogeneous space and hence is 

a rank-one symmetric space [6, Section 7.15]. Now Biquard [8] and Kovalev [16] show that 

Os admits a G-invariant hyperk~ihler metric such that the zero section G / K  is a complex 

submanifold of  T(G/K) .  Thus G / K  also admits a G-invariant K~ihler metric. We now 

deduce that G / K  = CP(n). This space has two homogeneous descriptions, namely 

SU(n + 1) Sp((n q- 1)/2) 
and 

U(n) S p ( ( n -  1) /2 )U(1) '  

but the latter does not occur as a semi-simple orbit. 
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3. Local calculations 

223 

We must analyse the hyperk~ler  metrics which can live on the complex manifolds 

described in Section 2. In this section we perform some preliminary calculations toward 

this end. 

As mentioned earlier, the union of  the principal orbits of M forms an open dense subset 

of  M, topologically equivalent to I × G/K where I is an open interval. We may take I 

to be a geodesic orthogonal to the orbits of G. The metric is then cast in the form 

g = d t2 + gt, 

where t is the arc-length coordinate on I,  and gt is a G-homogeneous metric on G/K for 

each t. 

The tangent space to the orbit at {t} x eK may be identified with an Ad K-invariant 

complement 1~ to f in .q. We can assume that G acts effectively on G/K, so that the adjoint 

action of  K on p is effective. From now on, all calculations will be performed on I × (eK). 
We decompose p into a sum of K-modules: 

= ~ 0 @ P l  ~ ' " @ ~ s ,  

where P0 is acted on trivially by K, and the other summands are irreducible. The metric on 

M is determined by a family of  K-invariant inner products on p, depending on t. 

Let J1, J2, J3 be an anti-commuting triple of  complex structures. We define vector fields 

~ a ( a -  1 ,2 ,3 )  o n M b y  

~a = Ja(O/Ot). (3.1) 

Taking the covariant derivative of  (3.1) shows that 

0 
JaVri -~ = Vvi~a (13.2) 

for all tangent vectors Yi. 
As each complex structure Ja, a --- 1, 2, 3, is G-invariant, we see that on I × (eK) each 

of  the three mutually orthogonal vectors ~a lies in 1o0, so 1o0 has dimension at least three. In 
fact, the analysis of  the possible underlying manifolds for M in Section 2 shows that D0 is 

precisely three-dimensional in all cases. Moreover it is a Lie subalgebra of  ,q isomorphic to 

~u(2). 
The four-dimensional vector space spanned by P0 and the normal vector O/Ot is a quater- 

nionic subspace of  the tangent space to M, closed under the Lie bracket. It follows that the 

family of  inner products on P0 ~ ~n(2) actually defines an SU(2)-invariant hyperk~ihler 
metric on I × SU(2). Moreover the complex structures of this metric are each SU(2)- 

invariant. Such metrics have been completely analysed in [4]. Ricci-flatness enables us in 
the usual way (see [9], for example) to diagonalise the metric on P0 for all t, with respect to 
a basis { Xl,  X2, X3 } satisfying the relations [X1, X2] = X3, etc. The coefficients h 2, h 2, 

h~ of  the diagonalised metric satisfy the equations 
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d 
(hlh2) + h3 = 0, and cyclically. (3.3) 

After changes of variables these are equivalent to the familiar spinning top equations of  [4]. 

The methods of  [ 12] may be used to show that, for a suitable choice of J1, J2, J3, we can 

take 

1 
sea = ~aXa. (3.4) 

on I × (eK). 
Suppose that there exists a basis Yi of  Killing fields for I01 • • • • @ Ps, orthonormal with 

respect to the Killing form, which diagonalises the metric for all t, so that 

g(Yi,  Yj) : ¢$ij f i  2 

for functions fi of  t. (A priori such a basis may not always exist.) Then the calculations 

of [5, Section 3.7] show that 

a J} Yi. (3.5) 
vr ,  at - Z 

Moreover, as Yi is Killing and sea is invariant with respect to the group action, we have 

on a4 

VY i sea : Yea Vi, (3.6) 

and, on I x (eK), this vector field is equal to ( l / ha )Vx ,  Yi by (3.4). 

Combining (3.2), (3.5) and (3.6) we obtain, on I x (eK), the equation 

JaYi = fi Vx,,Yi 
h.f,. 

The covariant derivative on the left-hand side may be calculated using formula (3.16) of [5] 

(see also [6, Ch. 7]). Exploiting the orthonormality of  II, with respect to the Killing form, 

we obtain, on I x (eK), 

f/ J (fj2 _ f/2 q_ h 2) 
Ja Yi -- 2h a f i  Z nai YJ' (3.7) 

where B j. are the structure constants defined by al 

ad(Xa)Vi = Z BJaiYJ" 

4. Metrics when G is not of  type An 

We can now study the possibilitiesfor hyperk/ihler metrics on the manifolds discussed in 

Section 2. Theorem 2.1 shows that M is an open set in SL(n + 1, C)/GL(n, C) o r H ( N )  for 
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some compact Wolf space N. If N is a Wolf space we can write N as G / K S p ( I ) .  All the 

G-orbits in H ( N )  are now principal and are copies of  G / K .  There is exactly one compact 

Wolf space for each Lie algebra ~ of compact simple type (except ~u(2)). 

In this section we consider the case when /~ is open in H ( N ) ,  and G is symplectic, 

orthogonal or one of  the exceptional groups. The isotropy representation of G / K  is now 

the sum of a three-dimensional trivial summand isomorphic to _~n(2) and a 4n-dimensional 
irreducible summand V [6]. The inner product on V is therefore a scalar multiple f2  

(depending on t) of the Killing form, so a basis Yi of the sort discussed in Section 3 exists. 

Moreover all the f i  2 are here equal to f2 .  

Formula (3.7) for the complex structure now shows that 

ha 
JaYi - . ad(Xa)Yi.  

2 f f  

Imposing the condition that Ja defines an almost complex structure now forces each 

function ha to equal + 2 f f .  After sign changes and translation of  t, Eqs. (3.3) show that 

we can take all the ha to be - ½ t. It follows that f 2  = 4- ¼ t 2 + c for a constant c. Evaluating 

the exterior derivative of the K~ihler form on tangent vectors to the G-orbits actually shows 

that the K~ihler condition forces c to be zero. 

The metric on M is now determined. It is, again following [ 18], the standard hyperk~ihler 

metric on H(N) .  This can only be extended to a complete metric in the case when N is HP(n) 
and M is fiat quaternionic space, so we do not obtain any complete irreducible metrics. 

5. Metrics when G is of  type An 

If M is open in SL(n + l, C)/GL(n ,  C) or in 

H(Gr2(Cn+l))  = H(SU(n  + I ) / S (U(2 )  × U(n - 1))) 

then the principal orbit is SU(n + 1) /U(n - 1). The isotropy representation is the sum of 

a three-dimensional trivial summand 100 isomorphic to ~u(2), and two copies 101,102 of  the 
standard representation of  U(n - i) on C n-l  . As u(n - 1) ~ 100 forms a Lie subalgebra 

of  ~u(n + 1), we can assume that the vector space 101 • 102 (though not its direct sum 

decomposition) is preserved by the adjoint action of 100. Viewing 101 • 102 as C n-I  ® C 2, 
this P0-action is just the standard ~u(2) action on the ~2 factor. 

As usual, the metric on the three-dimensional summand can be diagonalised, and the 
coefficients h 2, a = 1, 2, 3, satisfy Eqs. (3.3). 

We say that 101 and 102 are Killing-orthogonal if they are orthogonal with respect to 
the Killing form (., -). For any to, we can choose 101 and 102 to be Killing-orthogonal and 

orthogonal with respect to the metric at t ---- to. For general t, these spaces will still be 
Killing-orthogonal but not of course metric-orthogonal. 

The metric on 101 ~3 102 at a general value of t will be given by 

g(v, w) = (¢v, w), 
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where O is a U (n - 1 ) -morphism of  l01 • 1)2, symmetric  with respect to (., -). The dependence 

of the metric on t arises via the dependence of  ~, on t. 

With a suitable choice of  Kil l ing-orthonormal  bases over I~ for 1) 1 and 1)2, we can arrange 

that O has the form 

)2 V 

v r 2 0 ' 

where k, g ,  v and r are real scalar multiples of the (n - 1) x (n - l)  identity matrix. We 

shall also use k , /~ ,  v and r to denote the eigenvalues of  these matrices, that is, we shall 

regard )~, etc. as real-valued funct ions of t. Our choice of  1) 1 and 1)2 discussed above means  

that at t = to, # and v vanish. 

Our first task is to show that we can in fact diagonalise the metric for all t, not just  

at t = to. The idea is to use Ricci-flatness to show that once # ,  v vanish at to they vanish 

for all t. We first recall a formula from [5, Section 3.17], which shows that at to, 

()0 
= Z g  Tzi [Zi, X] (5.1) Ric X , ~ -  i ~ - '  ' 

where X is an arbitrary Kil l ing field, the vectors Z i form an or thonormal  basis of Kil l ing 

fields at to, and T is the O 'Nei l l  tensor. The formulae of  [5] enable  us to evaluate the term 

in T and we can rewrite (5.1) as 

( ) O ( Z i ,  Zj). (5.2) O (ad(X)Zi, Zj) -~g Ric X , ~ -  = / ~ j  g 

In our case, we can choose the Zi to consist  of halXa, for a ---- 1,2,  3, together with 

k-lyi ,  i = 1 . . . . .  2 n - 2 ,  and r - l Y / , i  = 2 n -  1 . . . . .  4 n - 4 ,  where Yl . . . . .  Y2n-2 
and 112,,-J . . . . .  Y4n-4 are bases for 1) 1 and 1)2 respectively, or thonormal with respect to the 

Kil l ing form. 

Now, we can find X and ,~ ~ 1)0 such that ad(X) and ad(X)  have matrices 

if° i/ (i ° ° 
0 0 a d ( X ) =  0 0 1 

ad(X) = 1 0 0 ' - 1  0 

- l  0 0 0 

with respect to the basis Yi, i = 1 . . . . .  4n - 4, for P l • ~2. So ad(X)  and ad(X)  interchange 

1) I and 1)2. 
Let us consider  Eq. (5.2), with X as given above. As I)0 is metr ic-orthogonal  to 1)1 @ 1)2 

for all t, the terms where Zi ¢ 1)o and Zj ~ 1)1 @ 1)2 are zero. Since the metric on 1)o is 

diagonal for all t, it is easy to check that the terms with Zi, Zj ~ 1)o are also zero. Finally, 

the fact that ad(X)  interchanges 1)1 and 1)2, and the metric-orthogonali ty of  these two spaces 

at to, implies that the terms with Zi, Zj E 1) 1 or Zi, Zj E 1)2 vanish at to. 



A. Dancer, A. Swann /Journal of Geometry and Physics 21 (1997)218-230 227 

The remaining terms are those with Zi E P l and Zj 6 02 or vice versa. We obtain the 

equation 

(r2 - L2)~t ( ~ r )  -- 0 at t = t0. (5.3) 

If  the metric on 191 @ 192 is proportional to the Killing form for all t, we may take any 

Killing-orthonormal basis for 19j 6) 192 and diagonalise the metric with respect to a basis of  

Killing fields. 

In all other cases we can choose to so that, in our notation, ~.2 (t0) 5~ r2(t0). As/z vanishes 

at to, we see from (5.3) that its first derivative does also. Using .~ in Eq. (5.2) we get a similar 

conclusion for v. We have shown that once the metric is diagonalised at to, its first derivative 

at to is also diagonal. 

The formulae of  [5, Sections 3.6, 3.7, 3.9 and 3.11] enable us to express the Ricci tensor 

at to evaluated on Killing fields in terms of  the metric and its first and second derivatives. 

The second-order ODE thus given by the vanishing of  the Ricci tensor now implies that the 

off-diagonal terms of  the metric in fact vanish at to to all orders. 

The metric is therefore diagonalised for all t by a basis of  Killing fields, and we can now 

apply the arguments of  Section 3. 

Eq. (3.7) shows that, f o r a  = 1, 2, 3, the endomorphism Ja is given on 191 6) 192 by 

( OtaeaflaQa ) J .= 
Ya Ra ~a Sa ' 

where 

ad(Xa)= (Pa  Q a )  
Ra Sa " 

Here c~a . . . . .  6a are scalar functions, given by 

Ot a = -ha/2)v~, (5.4) 

r ( r  2 - )v 2 _ h 2) 
fia = 2ha)v 2 4: , (5.5) 

) .()v 2 - -  Z-2 _ h 2 )  

~'a = 2 h a t 2 /  , (5.6) 

6a = -ha/2r~.  (5.7) 

If we denote by I2a the K~ihler form associated to J,,, the K~ihler condition implies that 

~5"2a(Yi ,  Yj)  -}- ,Qa ~ [Yi, Yjl = 0 (5.8) 

(the left-hand side of this equation is just d~2 a (3/Ot, Yi, Yj)). If / ,  j < 2n - 2 ,  (5.8) together 
with the above expressions for Ja implies that 

6ta~.eB{i = 0. (5.9) 

Now, our discussion earlier of  the ~u(2)-action on 191 6) 192 showed that ad(Xl),  ad(X2) 

and ad(X3) cannot all interchange 191 and 192. Without loss of  generality, we may assume 
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that ad(Xj ) does not interchange these spaces. It follows that P1 is non-zero, and there exist 

i, j < 2n - 2 such that B~i 7~ O. We deduce from (5.9) that otl is constant, and a similar 

argument shows that 61 is constant. 

We now claim that ad (X2) or ad(X3) interchanges ~l and 1-~2. For if not, the same argument 

as in the preceding paragraph shows that ore and a3 are constant. Eq. (5.4) now implies that 

the ratios ha/hb  are all constant, and it easily follows from (3.3) that h 2 --  h 2 = h~. In this 

situation the diagonal form of the metric on ~u(2), and the relations [X1, X2] = X3, etc. 

are preserved by orthogonal changes of basis of ~tt(2). A suitable such basis change will 

ensure that ad(X2) interchanges ~j and t~2. 

Our claim is now proved. Without loss of  generality we can in fact choose ad(Xe) to be 

the element interchanging the two summands. 

Next, we claim that we can take ad(X3) to interchange ~l and ~02. The argument is similar 

to that above. If  ad(X3) does not interchange ~1 and ~2, then in the usual way we deduce 

that or3 is constant. From above we know ot~ is constant, so from (5.4) we deduce that h I / h3 

is constant. Eqs. (3.3) now show that h 2 = h~, so orthogonal transformations of {X j, X3} 

preserve the diagonal nature of  the metric and the ~ ( 2 )  commutation relations. After such 

a transformation, we can assume that ad(X3) interchanges i~1 and 192. 

To sum up, we can assume that ad(X2) and ad(X3) interchange the spaces pj and P2. The 

relation IX2, X3] = Xj now shows that ad(Xr)  preserves ~j and P2. As J1 is Hermitian we 

deduce that ~l  = :t: 1. Similarly, as .12, J3 are Hermitian, we have/32 = q-r/k, /33 = q-r/),. 

and  2/2 = q - k / r ,  Y3 = 4-)~/r .  

The K~ihler condition (5.8) for J2 implies that 

d (y2r2) q-he ~- 0, (5.10) 
dt 

so we obtain 

d 
~ ( 4 - ~ . r )  + h2 = 0. 

Similarly, considering ~ we obtain 

d 
- ~  (-4-)~r) + h3 = 0 

and it follows that tl 2 = h e 3" 
Using (3.3) we find that the functions h i ,  h2, h3 are now expressible in terms of  trigono- 

metric or hyperbolic functions. Defining a new variable s by d s / d t  = (hlh2h3) -1, we 

have one of the following three possibilities: 

hi = - D c o t ( D s ) ,  h2 = h3 = - D c o s e c  (Ds) ,  (5.11) 

hi = - D c o t h ( D s ) ,  h2 = h3 =- - D c o s e c h  (Ds) ,  (5.12) 

or  

h j = h 2 = h 3 = - l / s ,  

where D is a real constant. We can view (5.13) as the D ~ 0 limit of  (5.12). 

(5.13) 
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After appropriate sign changes, we can without loss of generality take Ota = 1, Ya = ~,/r 

etc. Our equations then imply 

d(~. 2) d ( r  2) d(Xr) 
- -  h i ,  - -  h i ,  - -  - -  h2, 

dt dt dt 

and from (3.3) we can rewrite these as 

)2 = h2h3 d- Ki,  r 2 : h2h3 q- K2, ~.r : hlh3 q- K3, 

for some constants Ki ,  K2, K3. 

Substituting in our expressions for ha, we find that K3 = 0, K1 = - K 2  and the ha are 

given either by (5.13) or (5.12) with D 2 : K 2. 

The upshot is that we have a family of metrics parametrised by a non-negative number D 

(changing the sign of D does not change the metric). If D is non-zero, these are the Calabi 

metrics or their restrictions. If D = 0, we get the metric of [ 18] on L/(Gr2 (C n)), which does 

not extend to a complete metric. 
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